
Modelling of turbulent flow in 
gas-turbine blading: 
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Some of the problems associated with applying currently available viscous flow 
calculation schemes to turbulent flow in gas-turbine blading and passages are 
reviewed. These flows pose severe difficulties in both numerics and turbulence 
modelling, although the main emphasis here is on the latter aspect. Since complex 
strain fields and strong body forces are an intrinsic part of flow in turbomachinery, 
it is preferable that the turbulence modelling of these flows be based on an 
approximation of the Reynolds stress transport equations themselves. Some 
current views on closure approximations for these equations are discussed. 
Applications considered include the effects of free stream turbulence and stream- 
line curvature, the mixing of blade wakes, and the three-dimensional flows that 
arise in a 90 ° bend and in the corner boundary layer near a blade root 

K e y w o r d s :  turbines, fluid mechanics, turbulent flow 

The title of this paper is one of those cosy academic 
lies that are unquestioningly accepted as 'true 
enoughs'  in the seminar rooms of our technological 
universities. This paper aims to show the extent to 
which flow computation schemes based on dis- 
cretised forms of the averaged equations of motion 
succeed in mimicking the behaviour of certain 
laboratory created turbulent  flows which, in at least 
some respects, resemble those found in gas-turbine 
blading and passages. 

By comparison, say, with the shear flow 
developing over an aerofoil in an external flow, flows 
in gas turbines present many difficulties. Strain fields 
are more complex, especially those caused by  injec- 
tion through coolant passages in the combustion 
chamber and turbine blades and by the three 
dimensional shearing over the compressor and tur- 
bine blades. Because of the relatively small 
dimensions, chord Reynolds numbers are fairly low 
and 'inviscid' regions are either absent or strongly 
interacting with shear-flow regions. The large 
density variations in the combustion chamber 
between burned and unburnt  gases produce prob- 
lems in flow mixing that have only recently received 
serious consideration. Additional, substantial 
density variations well into the turbine section arise 
from blade cooling. This only adds to the problems 
of very severe favourable pressure gradient, stream- 
line curvature and high external-stream turbulence 
level all of which have a marked effect on the boun- 
dary layer development over the blades. Finally, 
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while nearly all turbulent flow aspects of turbine 
aerodynamics are currently treated as stationary 
phenomena, certain features, such as the successive 
impact of wakes from one blade row on the adjacent 
downstream row or the problem of rotating stall, on 
which Alan Stenning himself did some of his best 
work vS-vs, are intrinsically periodic and need to be 
analysed as such. 

When we speak of 'modelling' a turbulent 
flow, whether in a gas turbine or elsewhere, it is well 
to remind ourselves that the model will tend to repro- 
duce only as much detail as is required for, or encom- 
passed within, the originator's purpose. In the case 
of turbulent flow we do have, at one extreme, a highly 
detailed and accurate model available, the Navier- 
Stokes equations for a three-dimensional, time- 
dependent  laminar motion. Turbulence is nothing 
but  an extemely complex manifestation of such a 
flow. Although several groups, perhaps most notably 
that of Orzag at MIT, have developed numerical 
methods of solving the Navier-Stokes equations 
especially designed for the direct simulation of tur- 
bulence, even the proponents of these approaches 
see them as principally throwing light on the physics 
of turbulence rather than a vehicle for computing 
shear flows of practical interest. The problem is 
essentially one of scales: the smallest eddies present 
in a turbulent flow have a typical Reynolds number 
(based on their dimensions and associated fluctuat- 
ing velocity) around unity, for it is only in such 
motions that substantial turbulent kinetic energy can 
be converted to heat by viscous action. The largest 
scale eddies, however, have a Reynolds number of 
order kl/28/v (and may range from a few hundred 
to tens of thousands) where k is the turbulence 
energy and 8 is the flow width. To resolve, for an 
inhomogeneous shear flow, both the fine and the 
large scales of motion by  numerical simulation with 
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time steps sufficiently small to resolve the fine scale 
fluctuations seems to be a task that, for the foresee- 
able future, will not be routinely possible. 

At the practical level, interest in turbulence 
resides in the larger scales of motion for they not 
only contain most of the Reynolds stress but  also, 
through large-scale, vortex-stretching processes, 
appear to control the rate at which fluctuating energy 
is broken down into successively smaller eddies• 
Thus, indirectly, the large scale motions control even 
the viscous dissipation rates in the fine scale. It is 
this fact of turbulence life that has led to a great 
deal of interest in what have become known as 'large 
eddy simulations' (les). Although for an les a 3- 
dimensional t ime-dependent solving scheme is still 
employed, no attempt is made to resolve the finest 
scales of motion. Instead the effects of eddies smaller 
than the mesh are accounted for by a 'sub-grid-scale' 
turbulence model. Most simulations have adopted 
the Smagorinsky model in which the effective sub- 
grid-scale viscosity is given by a formula analo- 
gous to that of the Prandtl-Taylor mixing length 
hypothesis, save that the internode distance takes 
the role of the mixing length. A number of interesting 
large-eddy-simulations have been generated over the 
last five years, particularly by the group of Schumann 
and Gr6tzbach in Karlsruhe and the team led by 
Reynolds and Ferziger at Stanford 4-e. From the latter 

• • 6 . . group Klm and Morn have made a most lmpress]ve 
simulation of low Reynolds number flow in a plane 
channel. Using 500 000 grid nodes, they have suc- 
cessfully reproduced not only the mean and Reyn- 
olds stress profiles with good accuracy but  also such 
qualitative features of the flow as the streakiness of 
the viscous sublayer region• 

The detail is impressive, but  it must be said 
that " . 8 . thin computation required about 40 hours on 
the Illiac IV computer• Although the development 
of better sub-grid-scale models would  allow a reduc- 
tion of the mesh density with no untoward deteriori- 
ation in accuracy, the sheer magnitude of an les 
computation suggests that such approaches will have 
little direct effect in the 1980's on the computation 
of flow in turbomachinery. It is for this reason that 
attention here is limited to approaches in which 
averaging is applied to the equations over a sufficient 
time period or over a sufficient number of realisations 
to remove all the non-periodic fluctuations• In place 
of instantaneous velocities, the subjects of the 
momentum equations become mean velocity com- 
ponents which exhibit, by comparison with the 
instantaneous quantities, only a gradual variation in 
space and time. 

The essential problem of turbulence is the 
nonlinearity of the process of convective transport: 
the mean product of the mass flux and velocity vec- 
tors is not equal to the product of their means. In 
symbols, with upper and lower case u's denoting 
mean and fluctuating velocities, tildes and overbars 
representing instantaneous and averaged quantities, 
the problem for a uniform density fluid is expressed: 

pO jO ,  = ou ju ,  + pu,uj 

where 0 i - U j + u j ,  etc. The averaged products of 
fluctuating velocities pu~uj (the so-called Reynolds 
stresses) appear as unknowns in the averaged 
equations and the task of the turbulence model is 
that of providing a path for their determination. 

A later section gives a short review of the most 
popular or promising approaches to modelling tur- 
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Coefficients in turbulence model 
Skin friction coefficient 
Skin friction coefficient with non tur- 
bulent external stream 
Diffusive transport of stress 
Mixing length 
Length scale associated with stream- 
wise fluctuations 
Turbulent  kinetic energy 
Radius 
Radius of curvature of bend 
Rate of stress generation by mean strain 
Fluctuating temperature 
Mean temperature 
(without subscript) Mean and fluctuat- 
ing velocity respectively in x direction 
Instantaneous velocity in direction xj 
Mean velocity in direction xj 
Bulk mean streamwise velocity over 
duct cross section 
Fluctuating (turbulent) velocity in 
direction xi 
Reynolds stress 
Turbulent  'heat' flux (strictly an 
enthalpy flux per unit specific heat) 
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Fluctuating velocity in y direction 
Cartesian coordinate (non-tensor form) 
in flow direction 
Cartesian coordinate (usual notation: 
Xx--stream direction; x~--direction 
normal to wall) 
Cross stream coordinate 
Spanwise coordinate 
A typical shear flow width 
Boundary layer thickness (denoted by  
position where mean streamwise veloc- 
ity is 99.5% of free-stream value) 
Kronecker delta (equal to 1 for i =j ,  
equal to zero for i ~ j )  
Dissipation rate of turbulent kinetic 
energy 
Dissipation rate of Reynolds stress by 
viscous action 
Pressure containing correlations in Eq  
(3) (suffices 1 and 2 denote ' turbulence'  
and 'mean-strain' parts of the process) 
Kinematic viscosity 
Density of fluid 
Turbulent  viscosity 
Film cooling effectiveness 
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bulence in turbine-related shear flows. Before 
embarking on this, however,  a few comments are 
offered on progress over the last two decades, in 
developing numerical procedures for handling the 
flow equations into which the turbulence model 
must fit, the vehicle for the engine so to speak. The 
selection is weighted heavily towards generally con- 
ceived treatments, for only these approaches have 
much potential for application to industrial prob- 
lems. There is also an acknowledged bias towards 
the numerical solution methods evolved at Imperial 
College in the 60's and 70's by Professor Spalding 
and co-workers which provided a framework for 
much of the writer's own research in that period. 
The period of twenty years is chosen partly because 
it is a round number  which is appropriately divisible 
by  two and partly because 1962 can be said to have 
marked the start of the computer era. It was then 
that reliable, production-line digital computers such 
as the IBM 7090 started to appear in universities. 
Their coming had an immediate effect on methods 
being developed for turbulent boundary layers 
though initially this was evolutionary in form. The 
integral methods in use in 1961 initially gave way 
to more refined methods of the same type; for 
example the 1964 papers of Moses 7 and Spalding 8 
were based on a more elaborate velocity profile 
family, the wall-plus-wake description popularised 
by Coles 9. By the mid 1960's, however, it was real- 
ised by  some that a numerical discretisation of the 
boundary layer equations offered advantages of flexi- 
bility and stability over multi-parameter integral 
approaches. 

Nevertheless, in the procedure of Patankar 
and Spalding 1°, which must be judged as the out- 
standingly successful boundary layer solving 
scheme of the period, the authors' connection with 
integral methods was clear to see. The set of 
difference equations was obtained not by the conven- 
tional approach of decomposing differentials into 
algebraic approximations but  by integrating the 
equations of motion over a control volume surround- 
ing the node. This methodology has become increas- 
ingly widespread and schemes formulated in this 
way nowadays are sometimes referred to as 'finite 
volume' methods. At the 1968 Stanford Conference 
on (2-dimensional) Turbulent  Boundary Layers 11 9 
finite difference treatments and 20 integral methods 
tackled the various test cases. Four years later at the 
NASA Langley Conference on Free Shear Flows 12 
that distribution had become 13: 1, with finite 
difference schemes firmly in the ascendency. 

Soon after the arrival of its boundary layer 
procedure, Spalding's research group produced x3-1~ 
a computational procedure for the analysis of steady 
two-dimensional recirculating flows. Perhaps at this 
point, to avoid any impression that numerical fluid 
mechanics only began life with the digital computer, 
the pioneering work of Professor Thom and his suc- 
cessors should be mentioned 16-18. With the assist- 
ance only of desk calculators, numerical solutions 
to the flow about cylinders for Reynolds numbers 
up to about 50 had been obtained from finite- 
difference discretisations of the stream function and 
vorticity equations. Attempts to extend the range of 

Reynolds numbers had, however, been thwarted by 
the failure to secure convergence, a problem that 
turned out to be due to a central-difference approxi- 
mation for convective transport. The scheme 
developed in Ref 15, while also based on the stream 
function and vorticity, employed an upwind 
approximation for convection. This device largely 
removed, 'at a stroke' one is tempted to add, the 
stability problems that had dogged earlier work. 
Only years later were the side effects of this move 
to be fully appreciated. 

While reducing the number  of dependent  vari- 
ables, the use of the stream functions and vorticity 
had several drawbacks. It is not straightforward to 
extrapolate this approach to three-dimensional flow 
and, if the pressure field were of direct interest, it 
had to be recovered. This treatment, therefore, was 
fairly quickly superseded by recirculating flow 
methods based on 'primitive' variables, that is to say 
the velocity components and the static pressure (see 
for example Refs 19-21)1". Three-dimensional elliptic 
treatments emerged virtually in parallel with the 
two-dimensional schemes although their practical 
usefulness was severely limited by the capacity of 
the computers then available; indeed, this is still a 
limiting factor. Special methods, less expensive in 
storage and execution time, were evolved, however, 
to cope with three-dimensional boundary layers (for 
example Refs 22 and 23). 

Thus, with the completion of the first decade 
of computer-based numerical fluid mechanics, con- 
siderable progress had been made in providing gen- 
eral calculation methods for viscous flows of many 
different types. Progress had also been made in the 
development of models for the turbulent transport 
rates. The succeeding decade, bringing us up to the 
present, should, one might suppose, have been the 
one that saw the wholesale adoption of these flow 
calculation methods throughout the advanced tech- 
nology industries. But it was not. Indeed, the impact 
of numerical fluid mechanics on the turbomachinery 
industry in the period 1972-1982 is better described 
as a species of trench warfare than a computer revol- 
ution. Some reasons for this relatively slow introduc- 
tion, at the practical level, of numerical methods are 
easy enough to see. A major reason must surely be 
that the real problems are harder to solve than the 
idealised ones that code developers habitually con- 
sider. Computer  programs developed for research 
are not easily applied to industrial problems even 
when due care is taken to provide as general a formu- 
lation as possible. For example, although the recircu- 
lating flow procedure given by Gosman et a115 
allowed the use of arbitrary orthogonal coordinates, 
it contained no mesh-generation scheme to facilitate 
applications in the complex geometries arising in 
practical flows. Admittedly, much progress has been 
made from the mid 1970's in providing methods for 
body-fitting coordinates, stimulated especially by 

2 4  2 5  the work of Thompson and his colleagues " . The 

f There is still widespread use of stream function and vorticity 
by numerical analysts, see for example the buoyant cavity test 
case considered at the Conference on Numerical Methods in 
Thermal Problems 71, Venice, 1981 
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fruits of that research and equally, that of the several 
powerful groups developing finite-element methods 
for turbulent flows, are by no means fully harvested, 
however. Other factors, perhaps most importantly 
the scarcity of trained personnel, have also con- 
tributed to the rather slow take-up by industry. 
Rather than lament a decade of half-missed oppor- 
tunities, however, it is better to try and ensure that, 
at least, the next ten years will be the ones where 
numerical methods for computing turbulent shear 
flows do begin to make a real contribution. 

Choice of turbulence model 
At least two monographs, several extensive review 
articles, and countless papers have been written 
about turbulence models of the kind needed in num- 
erical solutions of the averaged Navier-Stokes 
equations. Given such comprehensive accounts ~6-32, 
no attempt is made to re-review the extensive 
literature here. Instead the main strategies are sum- 
marised and some personal views expressed on the 
various questions of choice confronting the user. 

The advent of numerical methods for solving, 
in discretised form, the differential form of the flow 
equations provided the greatest possible stimulus to 
research on models for calculating the local turbulent 
stresses. Here the implied contrast is with the 
integral methods which generally required global 
models, such as the factors governing the fluid 
entrainment rates into the boundary layer. Practical 
finite difference schemes for turbulent flow employ 
what are known as single-point closures; these 
models involve correlations between two or more 
fluctuating quantities all of which are evaluated at 
the same point. Within this still wide range of closure 
options three types of model are seen as appropriate 
for use in practical calculations: 

Boussinesq viscosity models (BVM) 
Reynolds stress transport models (RSTM) 
Algebraic stress models (ASM) 

The ASM is a simplified form of RSTM and some, 
no doubt, would not accord it a separate classi- 
fication. 

Boussinesq viscosity models 
BVM's are based on the idea that turbulence is 
described by the same type of stress-strain relation 
as a laminar Newtonian flow: 

1 _ _  [ou,+ouj~ 
--O( u,u, --~ 8.ukuk ) = (1) 

~W~Oxj Ox,] 

where the turbulent viscosity tzT is to be determined 
and 8ij is the Kronecker delta. Although this concept 
is associated with the name of Boussinesq, he made 
clear ~3 that the idea went back at least as far as 
St Venant, roughly 150 years ago. One might com- 
ment that any idea that can survive that long can't 
be all bad. The first recognisable BVM, one that 
provided a strategy for finding the turbulent vis- 
cosity, was the Prandtl-Taylor mixing length 
hypothesis which, for the two dimensional thin shear 

flows that the origiriators had exclusively in mind, 
amounted to: 

= al~m OU /XT 
v . t 4 .  

where OU/Oy is the mean strain and lm the user- 
supplied mixing length which was related in a gen- 
eral way to the scale of the turbulent mixing. Current 
ideas on the BVM approach would hold that (OU/Oy) 
(which has the dimension (time) -1) really stood for 
a typical time scale of the s tres s-containing turbulent 
motion. In practice the mean field only provides an 
accurate guide to the time scale when stress gener- 
ation and destruction rates are nearly in balance. On 
the axis of a jet the mixing length hypothesis would 
give an infinite turbulent time scale and thus zero 
turbulent diffusivity. Yet, if by some means we 
coloured the fluid on one side of the axis we would 
in fact observe that a rapid mixing of fluid occurred 
from one side of the jet to the other. 

This is one of the fundamental weaknesses of 
the mixing length hypothesis. Another is that the 
turbulent length scale is not in general prescribable 
by algebraic formulae; like the time scale it depends 
on transport effects and both need to be found from 
transport equations. Indeed, contemporary BVM 
treatments are often referred to as 'two-equation 
models'. The two scalar properties that are the sub- 
ject of the transport equations could in principle be 
the turbulent length and time scales but in practice 
a different pair has always been chosen. The tur- 
bulent kinetic energy k is nearly always adopted as 
one and, while a wide variety of dependent variables 
has been proposed as the subject of the second 
equation, the most popular has proved to be the 
dissipation rate of turbulence energy, e. The tur- 
bulent viscosity is then obtained as: 

t J ' T  = c,pke/e (2) 

where c ,  is usually taken as a constant approximately 
equal to 0.1. The turbulent transport equations, it 
must be underlined, are not exact. While only the 
diffusion process requires approximation in the tur- 
bulent kinetic energy equation, the e equation (or 
one of the alternatives) owes more to intuition and 
computer optimisation than exact analysis. The main 
practical advantage of the k - e model over the other 
two-equation alternatives is that in thin shear flows 
it gives roughly the correct level of txx in both free 
shear flows and in flows along walls without the 
need for any wall-proximity corrections in the latter. 
This relative generality, alas, falls well short of uni- 
versality for it is now known that in a turbulent 
boundary layer near separation or in the impinge- 
ment region of a jet the e equation leads to substan- 
tially too large levels of viscosity. 

In favour of BVM's, it may be said that they 
are based on a simple-to-understand notion broadly 
in agreement with observed behaviour; momentum 
nearly always does get transferred down the velocity 
gradient. Moreover, from the point of view of the 
computational fluid mechanicist, turbulence models 
of this type are rather easily incorporated into his 
solving procedures and their form is generally con- 
ductive to stability. Finally, it is a closure level at 

174 Vol 3, No 4, December 1982 



which it is fairly easy to include the direct effects of 
molecular viscosity on the turbulence, an influence 
that becomes essential to include in the immediate 
vicinity of a wall. Against these undoubted  virtues 
must be set a list of shortcomings. BVM's will give 
the correct level of shear stress only in simple strain 
fields• Moreover they always get the stress com- 
ponents with only small amounts of direct generation 
badly wrong. Because the turbulent viscosity is taken 
as a scalar, BVM's do not respond correctly to the 
effects of force fields which, by  their nature, exhibit 
directional preference. Even in a simple shear in the 
absence of body forces the effective diffusivity in 
the boundary  layer is still highly non-isotropic as 
one of the examples will later display. 

These shortcomings have led several groups 
around the world to conclude that if numerical com- 
putations are to make a significant contribution to 
solving industrial problems of turbulent  flow, BVM 
models, with all their attractions, need to be replaced 
by  a more general representation. Although there 
have been one or two suggestions about developing 
a model for a tensorial turbulent viscosity, it is now 
generally agreed that the modelling level best suited 
to the task is the second moment  closure or, as we 
here refer to it, the Reynolds stress transport model. 

Stress transport and algebraic stress models 

An exact transport equation for the rate of increase 
of Reynolds stress can readily be obtained by  
taking appropriate velocity-weighted averages of the 
Navier-Stokes equations. In symbolic form it may 
be written: 

Du~ui 
= Pii + ( ~ i j  - -  ~' i j  4-  O i i  (3) 

Dt 

The symbols on the right of Eq  (3) are shorthand 
notation for turbulence correlations which exert the 
following physical effects: 

Pij stress generation through mean strain 
(~ij randomising actions of pressure-containing 

correlations 
e~j viscous dissipation 
Dij diffusive transport of stress by velocity and 

pressure fluctuations 

The last three processes are not exactly determinable 
in a second-moment closure and they are nominally 
approximated term by term. The first can be written 
in full as: 

[__OUj __OUi~ 

The summation convention is adopted whereby the 
repeated suffix k is to be summed over the three 
Cartesian directions. Evidently P~j contains only 
mean velocity gradients and Reynolds stresses and 
thus requires no further approximation. It is a major 
term in nearly all turbulent flows and it is the fact 
that it can be handled exactly that offers the hope of 
being able to achieve a reasonable width of applica- 
bility for turbulence models devised at this level. 

Turbulent flow in gas turbine blading 

The form of the term suggests far more subtle and 
intricate connections between the mean strain and 
stress fields than arise from the notion of an isotropic 
turbulent viscosity. 

For turbomachine applications the most 
important of the unknown processes to approximate 
is the pressure-containing correlations, ~bij. If we 
regard Pij as the ' income' to the Reynolds stresses 4~i 
represents the taxes. It is a fairly sophisticated tax 
structure (though possibly not as complex as that of 
our own society) with Robin Hood  like 'rob the rich, 
reward the poor'  elements in addition to the draining 
off of funds with no visible return with which we 
are also familiar. It is now generally recognised that 
any approximation to ~blj should comprise two ele- 
ments: one containing purely turbulence correla- 
tions (&~jl) and a second introducing an additional 
influence of mean strain (~bij2). Quite elaborate 
models have been devised for each of these pro- 
cesses (see for example Lumley 32) though their use 
has largely been limited to highly contrived 
homogeneous flows• The more elaborate the model 
the more difficult the task of optimising the empirical 
coefficients and, on more that one occasion, such 
'advanced' treatments have given entirely erroneous 
predictions when used to calculated a more complex 
shear flow (see for example Ref 39). It is partly for 
this reason that most applications to flows of the type 
found in gas turbines have so far been made with 
the following forms which, while undoubtedly  
giving only a grossly simplified account of the action 
of the pressure-containing correlations, nevertheless 
do capture the 'first-order' tendencies: 

e 1 _ _  I 

~ i j l  ~ i j 2  

The proposal for ~bijl is due to a very early contribu- 
tion by RotTtaa6, that for ~blj2 to Naot, Shavit and 
Wolfshtein though it must be said that they recom- 
mended it as a replacement for ~bijl. The first use of 
both the terms of Eq  (4) was probably by Rodi 38. To 
continue our fiscal metaphor, ~b~il represents a wealth 
tax (though, for i = j  it will tend to increase the level 
of those components with less than the average 
wealth) while ~b~j~ is an income tax (which again 
provides a refund for those normal stress elements 
with a below average income)• The best choice of 
constant coefficients for cl and c2 is approximately 
1.8 and 0.55. Several attempts have been made to let 
cl and c~ depend upon dimensionless turbulence 
parameters (eg Lumley .2, Chung and Adrian 4°, 

• • 41 42,  . . Smdlr , Cler ) but  there is no clear evidence that, 
for a shear flow, this produces any overall 
improvement• 

This is not to suggest that no further improve- 
ment in the model for 4'ij is possible. It probably 
does indicate, however, that rather than introduce 
empirical dependencies into the coefficients of Eq  
(4) it will be better to start with a somewhat more 
general mathematical framework within which to 
optimise the model. As we have noted above, several 
such schemes are currently under development by  
different groups around the world. Despite the 
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difficulties of optimisation, we can expect to see their 
introduction to gas turbine flows in the next few 
years. 

The vital role of the pressure interaction terms 
in both sustaining turbulence yet limiting its level 
may be seen from considering the direct generation 
and dissipation rates of the individual stress com- 
ponents in a simple shear flow (U1 = Ul(x2), (-72 = 
U3 = 0). Here we interject that viscous dissipation 
in a turbulent flow is generally held to take place in 
fine scale motions that have no sense of what is 
happening to the mean motion, or indeed, to the 
larger-scale turbulent eddies. In short, the dissipat- 
ing eddies are regarded as isotropic which allows 
the tensorial dissipation rate ~j to be expressed in 
terms of the turbulence energy dissipation rate (a 
scalar) and the Kronecker delta: 

2 
~'ij = 3~ij  ~ ( 5 )  

The resultant production and dissipation rates for 
the individual components are given in Table 1. 
There is no direct generation of u2, the mean 
square level of turbulent velocity fluctuations in the 
direction of the mean velocity gradient; any tur- 
bulence activity in that direction is thus attributable 
to the intervention of pressure-containing correla- 
tions. Their action in transferring turbulence energy 
from the mean flow direction to the x 2 - x 3  plane 
completes what might be called turbulence's eternal 
triangle suggested in Fig 1: velocity fluctuations 
down the mean velocity gradient tend to augment 
shear stress ulu~ which in turn leads to a generation 
of u--~l; some of this energy is diverted via pressure 
fluctuations into u2, etc. Eq  (5) indicates that there 
is no direct dissipation of shear stress and it is again 
¢ijl which prevents the unlimited growth of this 
component. The reader may readily verify that the 
postulated form 4 of ~bl i does, qualitatively at least, 
provide a correct mixture of energy redistribution 
and shear stress destruction. 

In most wall-bounded shear flows the pro- 
cesses, Pii, ¢ijl and ¢ij2 are collectively the most 
influential factors. To determine the relative levels 
of the stresses, though not their absolute levels, it is 
often sufficient to neglect transport effects entirely. 
If one makes this approximation of local-equili- 
brium, combination of Eqs (3), (4) and (5) gives the 

x 2 ' 

Direct coupling through shear generotio~ 
Indirect coupling by pressure fluctuations 

F/g 1 

u, _ / 

7 

The eternal triangle o f  turbulent  shear f lows 

T a b l e  1 P r o d u c t i o n  a n d  d i s s i p a t i o n  
r a t e s  

Component P~i E~i 

- -  dU1 2 
U 2 - - 2 U l U 2  dx2  §e 

u~ 0 

u~u2 dx2 0 

following algebraic expression for the Reynolds 
stresses: 

- -  2 ( 1 - c 2 )  k t 
(uiuj - ~Siik ) - ( e l i  - 5 6 i j P k k )  ( 6 )  

C l  e 

Eq (6) offers a constitutive relation between stress 
and strain which may be used in place of the 
Boussinesq formula (Eq (2)). It represents the 
simplest form of ASM. The scalars k and e remain 
as unknowns and are conventionally obtained by 
solving the same pair of approximate transport 
equations as with the BVM 2-equation model. While 
the presence of the shear production tensor in Eq  
(6) leads in general to quite different stress strain 
relations than Eq (2), for the particular case of a 
simple shear, the formulae for the shear stress from 
these two approaches happen to be equivalent. This 
comparison helps show why, for the considered 
example, the idea of an effective turbulent viscosity 
'works', yet underlines how dangerous it is to extend 
its use to complex strain fields. Most developers of 
ASM treatments feel able to do better than merely 
omitting transport effects on the relative stress levels. 
The transport of the stresses is approximated in terms 
of the corresponding transport of turbulence energy, 
the most widely used proposal being due to Rodi 43. 
When this transport approximation is incorporated, 
Eq  (6) is again recovered, save that the constant 
coefficient (1 - c 2 ) / c  t is replaced by a quantity depen- 
dent on the ratio of the rates of turbulence energy 
generation and dissipation. 

Eq (6) is not suitable as it stands for use in 
boundary layer computations because, close to a 
rigid boundary,  it gives too large levels of turbulent 
fluctuations normal to the wall (and it is these fluctu- 
ations which, as Fig 1 has indicated, are responsible 
for shear-stress generation). Turbulent  pressure 
fluctuations reflect from the surface producing an 
'echo' which impedes the flow of energy from 
streamwise to the normal direction. Models for the 
wall-reflection processes have been suggested 31"44"45 
which seem to work well enough for plane or nearly 
plane surfaces. They fall well short of being theories, 
however, and their extension to more complex cases 
where, say, two walls intersect at right angles is not 
yet convincingly demonstrated. 

The rationale of representing stress transport 
in terms of turbulence energy transport derives from 
the desire for comparative numerical simplicity 
rather than physical realism. Reynolds stress trans- 
port models (RSTM's) retain stress convection 
exactly and adopt less restrictive models of diffusive 
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transport (Dii) than is possible within an ASM 
framework. One must thus solve a system of (dis- 
cretised) differential equations for each non-zero 
stress component  rather than just one for the tur- 
bulence energy. Whether the extra computational 
effort is justified or not has not been established in 
any general way. Indeed, no general determination 
is possible since the particular flow considered and 
the accuracy required will always be important 
ingredients in deciding the issue. For two- 
dimensional thin shear flows, the additional storage 
and execution time for an RSTM is modest  but, in 
the cases where comparisons can be drawn, the 
improvement in accuracy over that of an ASM treat- 
ment is usually rather slight. In three-dimensional 
and recirculating flows the additional core required 
for an RSTM treatment has proved to be something 
of a deterrent but, undoubtedly,  as larger computer 
storage becomes available models of this type will 
be tested. 

The above discussion has considered purely 
the question of calculating the Reynolds stresses. 
For flows in hot-section components of a gas turbine, 
turbulent heat fluxes will also be of interest; indeed, 
for some problems the principal interest. While the 
adoption of a uniform, isotropic turbulent Prandtl 
number  is common in thermal boundary layer analy- 
sis this concept has similar weaknesses to that of the 
turbulent  viscosity idea: it will at best be useful 
when turbulent heat fluxes are important in only one 
direction, as in a two-dimensional thermal boundary 
layer. For more general circumstances, models based 
on closure of transport-equations for the turbulent 
heat-fluxes are more likely to be successful. The 
simplest formula that can claim such an ancestry is 
readily obtained. Mean temperature gradients 
(aT/axi) present in a fluctuating turbulent field pro- 
duce turbulent heat fluxes ud at a rate: -u~uj aT/axj. 
Thus, by  strict analogy with Eq  (6), one is tempted 
to suggest the heat fluxes be approximated by: 

k aT -~,t~c--u~uj-- (7) 
e axi 

Eq  (7) has, indeed, been used by  several workers 46'4v 
with a constant of proportionality of about 0.3. It is 
not as general as Eq  (6) since it neglects the fact that 
mean velocity gradients also produce a heat flux, but  
nevertheless correctly accounts for phenomena that 
cannot be represented with an isotropic Prandtl 
number. Suppose, for example, one wishes to calcu- 
late how rapidly a hot streak in a boundary layer on 
a turbine blade will die out. Eq  (7) tells us that, if 
the velocity field is two dimensional, the effective 
diffusivities in the direction normal to the blade 
surface (x2) and that in the spanwise (root-to-tip) 
direction (x3) are in the ratio u--~: u--~. The level 

----r2 of ua near the surface is several times that of 
implying that the diffusion of heat will proceed 
highly non-isotropically. 

Some turbulent flow computations 
The flow computations discussed in this section have 
been chosen for their intrinsic relevance to gas tur- 
bine flow. Broadly they proceed from the simple to 
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the more complex and, so far as possible, com- 
plexities are added one at a time. Except where 
details of the numerical solution are provided it may 
be assumed that the computor used a sufficient 
density of nodes to render any numerical error 
insignificant. Rather more than half the examples are 
taken from computations submitted to the Stanford- 
AFOSR Conference on Complex Shear Flows held 
in September 1981. The selection aims to give a 
balanced view of what can be done and what cannot. 

The first example, one of the Conference test 
cases, relates to the effect of high free stream tur- 
bulence on the skin friction eoefficient in a turbulent 
boundary layer. Bradshaw 48 (see also Hancock 49) 
proposed that the combined effects of turbulent 
length scale and turbulence intensity could be fairly 
well correlated by the chosen abscissa of Fig. 2. The 
symbols represent his proposal, not the experimental 
data themselves which, or course, show scatter about 
this position. The lines represent a mean locus 
through many sets of computations obtained by the 
UMIST group s° for the BVM and ASM models, both 
based on solution of the standard k and e equations. 
Several groups around the world tackled this case 
with similar results to that shown in Fig 2. The extra 
effect of free-stream turbulence on cf is underesti- 
mated in the middle range of turbulence intensities, 
though apparently less so at the higher intensity end. 
It might be added that one of the most complete sets 
of experimental data by Charnay 51 displays a vari- 
ation in much closer agreement with the computa- 
tions. I conclude that the influence of free stream 
turbulence is probably acceptably accounted for. 

As is well known, a much more dramatic effect 
of free stream turbulence is associated with laminar- 
turbulent transition. The turbulence models dis- 
cussed in this paper are not able to predict transition 
phenomena in any general way. For the specific case 
found in gas turbines, where the transition process 
is dominated by  diffusion to the wall of turbulence 
energy from outside the boundary layer, however, 
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there are firmer grounds for optimism. Fig 3 shows 
predictions by Priddin 5~ of the variation of heat 
transfer coefficient around the suction surface of a 
blade of a turbine cascade, the data being those of 
Turner 53. The turbulence model employed was the 
k - e  BVM incorporating low Reynolds number 
effects 54. Three turbulence levels are shown, the 
lowest corresponding to the background turbulence 
level of the wind tunnel. In this latter case the flow 
remains laminar over the blade. At 2.2 and 5.9% 
turbulence intensity (upstream of the blade) 
significantly higher levels of heat transfer coefficient 
result, though at different chord postions the percen- 
tage augmentations are quite different. The computa- 
tions mimic these effects very closely and, since they 
provide detailed predictions of the velocity field 
across the boundary layer, allow an explanation of 
the curiously non-uniform behaviour. At 2.2% 
intensity the external turbulence level is insufficient 
to provoke complete transition to turbulent flow 
given the strongly favourable pressure gradient. By 
contrast, at 5.9% virtually complete transition occurs 
at about 15% chord. The excellent measure of agree- 
ment obtained in this case probably gives a too 
favourable view of the ability of two-equation BVM's 
to account for diffusion-induced transition. Even 
allowing for a measure of good fortune, however, 
the results must still be seen as highly encouraging. 

A final example concerning effects of a highly 
turbulent free stream is provided by Fig 4, again 
drawn from the work of the UMIST group for the 
Stanford Conference 5°. The development of skin 
friction in a 4 ° conical diffuser is shown for two 
different sets of entry conditions: in one case the 
entry flow is smooth and in the other the flow is 
delivered through a small diameter pipe which 
undergoes a sudden enlargement some fifteen 
diameters before the diffuser entry. The expansion 
provokes a large confined separated region leading 
to high entering turbulence levels. The distributions 
of wall friction are quite different for the two cases 
indicating that experiments conducted in 'clean' 
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Fig 3 Diffusion-induced transition on turbine 
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laboratory conditions are of little value for estimating 
performance of the same hardware in the highly 
turbulent environment of a gas turbine. The compu- 
tations however manage to cope fairly well with the 
effects of the different initial conditions. The too 
high level of friction with the BVM for the case of 
low core intensity in fact arises from a tendency of 
the e equation to produce too large length scales 
(and thus too large viscosities) as the boundary layer 
approaches separation. 

Attention is now shifted to the effects of 
streamline curvature. The flow considered in Fig 5 
is a rectangular sectioned duct of large aspect ratio 55. 
One of the major sides of the test section provides, 
in its central portion, a convex surface of circular arc 
and in the initial and final sections a plane surface. 
The distance between the test surface and the 
opposite wall is carefully tailored to give only a small 
pressure gradient along the test plate itself. The 
behaviour of the skin friction coefficient is shown in 
Fig 5. The sudden dip in measured cf corresponds 
with the entry to the curved section (x, = 0) which 
extends as far as x, = 0.8. The computations of this 
flow, abstracted from the UMIST submission to the 
Stanford Conference, broadly indicate that the ASM 
model shows a reaction to streamline bending similar 
to that found in the experiment while the BVM calcu- 
lations exhibit hardly any response. The reasons for 
this lie in the different stress-strain connections 
adopted in the two models (Eqs (6) and (2)). With 
the Boussinesq model the imposition of a small 
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secondary strain associated with curvature produces 
the same percentage change in stress level. In the 
ASM model, however, the various strain components 
are multiplied by different stress components; there 
is also cross-talk between the individual stress com- 
ponents. Collectively the effect is to render the sys- 
tem of equations highly sensitive to small secondary 
strains; indeed, almost as sensitive as real turbulence. 

These examples have considered how boun- 
dary layer development is modified by high levels 
of free stream turbulence, pressure gradient and wall 
curvature. All these features are present in flow over 
blades. There are other factors as well, however, 
perhaps the most important of which is that real 
blade flows are significantly 3-dimensional. One of 
the Stanford test cases was the idealised wing-body 
junction of Shabaka 5e illustrated in Fig 6. Vortex 
lines in the wall boundary layer upstream of the 
'wing' are bent around in the familiar horseshoe 
vortex giving rise to strong streamwise vortieity. The 
Conference did not require participants to start their 
computations ahead of the junction for the organisers 
suspected that the task of properly capturing the 
horseshoe vortex lay beyond the capabilities of pres- 
ent viscous flow computation schemes~. Instead 
primary and secondary velocity profiles were sup- 
plied a short distance downstream of the leading 
edge. The computor's task was thus to calculate the 
three-dimensional boundary layer development 
downstream of that point. Fig 7 shows the computed 
and measured distributions of skin friction co- 
efficient along the 'wing' (y) and 'body' (z) surfaces 

They did, however,  leave open the possibility of so doing in 
case anyone wished to demonstrate the wide app l i cab i l i t y  o f  his 
c o m p u t a t i o n a l  m e t h o d .  N o - o n e  did. 

0 0 0 4  

,.~ 0002  

0 0 0  

Fig 5 
surface 

0 0 0 

Start of 
curvature 

t t [ L t i I t I 
0 0.5 

0 0 0 0 0 0 

0 Experimental data 55 
CornputationsS°ASM 

- - -  Computations °u BVM 
End of 
curvature 

I t I I [ I I I I J I I I 

10 t5  
x s ~ m  

Development of  skin friction on a convex 

/Computotions , I I 

\ \ \ \ \ \ \ \ \ \ \ \ \ \ 

Fig 6 Idealised wing-body junction 

Turbulent f low in gas turbine blading 

at the most downstream station. Away from the vicin- 
ity of the corner cf falls with increasing z along the 
'body' but shows a tendency to increase along the 
'wing'. This contrasting behaviour arises from the 
decaying counter-clockwise flow rotation (viewed 
from upstream) produced by the horseshoe vortex 
which lifts fluid away from the wall along the 'body' 
but brings high velocity fluid towards the wall on 
the 'wing'. The computations are those submitted by 
Rodi s group 57 using the k - e  BVM treatment. The 
agreement is, on the whole, impressive though the 
calculated behaviour misses the overshoot on cf on 
the wing surface near the root. This feature, which 
appears to be due to a weak secondary streamwise 
vortex, might have been resolved had an ASM treat- 
ment been applied. 

Three dimensionality of flow over blading is 
also important in the blade wakes. Hah and Lak- 
shminarayana s8 have undertaken an impressive com- 
putational study of rotor wakes employing both BVM 
and ASM treatments. In these flows strong Coriolis 
force fields are present. A fully 3-dimensional dis- 
cretisation of the Reynolds equations was made with 
40 nodes in the streamwise and azimuthal (blade-to 
blade) directions and 10 radial nodes. The authors 
do not establish the insignificance of numerical 
diffusion but there is reason to suppose it is not a 
major factor since the flow is of thin shear flow type 
and the authors report that their computations were 
highly sensitive to the choice of turbulence model 
(numerical diffusion would dull this sensitivity). 
Mean velocity profiles are reproduced from their 
paper in Fig 8, where U, V and W denote streamwise 
azimuthal and radial components respectively, n is 
the azimuthal distance, $ is the circumferential dis- 
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tance between the blades at mid radius, and s is the 
distance downstream of the trailing edge. Com- 
parisons with the data of Reynolds et a172 are made 
at a ratio of local-to-tip radius of 0.8, the computa- 
tions being those obtained with the ASM treatment. 
Agreement between the two is, as the authors them- 
selves comment, remarkably good. 

On turbine blades additional flow three- 
dimensionality may be introduced by the injection 
of coolant through holes in the blade. In a series of 
papers, Bergeles et a159-61 have considered various 
aspects of this problem. The initial study, indicated 
in Fig 9, was the injection from a single isolated hole 
into a two-dimensional boundary layer in zero pres- 
sure gradient. An expanding 3-dimensional mesh 
covered the hole region as indicated. To save storage 
a 'semi-elliptic' rather than a fully 3-dimensional 
computation was undertaken which meant that only 
the pressure field was held in a 3-dimensional array. 
All other dependent  variables were stored on just 
two adjacent planes at right angles to the primary 
flow with information successively passed from the 
upstream to the downstream plane. This device 
allowed the use of a finer mesh than would otherwise 
have been available (up to 80 nodes in the streamwise 
direction) but  limited the study to low injection rates 
as the appearance of negative values of streamwise 
velocity could not be accommodated. (Beyond 5 
diameters behind the hole where pressure variations 
were small computations switched to a boundary 
layer treatment in which even the pres sure was stored 
only two dimensionally.) The focus of the computa- 
tions was on the dilution and lateral spread of the 
cool fluid, particularly regarding the composition of 

the mixture at the wall. The film-cooling effective- 
ness ~1 shown in Fig 10 gives the fraction of the cool 
fluid present at the surface for a mean injection 
velocity equal to 10% of the free stream value. The 
variation of ~ with downstream distance is shown 
for a line directly behind the injection hole and at 
0.5D, 1.0D and 1.5D offset (D being the hole 
diameter). Agreement with the experimental data of 
Ramsey and Goldstein 62 is virtually complete• The 
turbulence model used was the usual k ~ e  BVM 
except that the diffusivity in the lateral direction was 
enhanced relative to that normal to the surface in .-...~ -----~ 
approximately the ratio u3/u2, in line with the 
indications of the ASM approach (the ratio u--~s/u--~2 
was prescribed as an algebraic function of position 
in the boundary layer). The importance of this 
adaptation is seen in Fig 10(b) which includes pre- 
dictions (shown by the broken line) with the standard 
k - e  BVM. These computations were started at 
xl/D =6, the origin of xl being the upstream lip of 
the hole. By xx/D=20 a serious difference has 
developed in the ~/ decay pattern, the levels on the 
centreline (xs/D = 0) being some 40% too high and 
that along x3/D = 1 a similar amount too low. 

The same authors extended their studies to 
single and double rows of holes and to higher injec- 
tion rates6°'~l• As the flow became more complex the 
quality of agreement gradually deteriorated. For 
holes located near the stagnation region of a turbine 
blade, external velocities parallel to the blade are 
low and a 'fully elliptic' numerical treatment is then 

• 6 3  • • needed. White has reported successful apphcatlon 
of computations of this type to stagnation region film 
cooling. At present computer times for these types 
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Fig 9 Computational mesh for numerical study 
o f  discrete-hole injection (Bergeles et al 5a) 
(Reproduced by kind permission o f  Numerical Heat 
Transfer) 

of calculation are too long, typically about one half 
hour on a Cyber205, for routine pre-design type 
explorations, particularly as the accuracy of the 
prediction is uncertain. Simpler, laterally-averaged 
two-dimensional treatments such as developed by 
Crawford et al 7° require only about one hundredth 
of the computing effort and are clearly very useful 
in giving a guide to mean cooling effectiveness. 
Nevertheless for 'trouble shooting', such as in track- 
ing down the cause of local hotspots giving recurrent 
blade failures, the additional detail provided by the 
3-dimensional programs is invaluable. 

Current trends are to make the coolant do as 
much cooling as possible before discharge to the 
outer surface of the blade. Two recent computational 
studies have examined different aspects of internal 
blade cooling. Howard et a164 have considered heat 
and momentum transfer in long rotating passages 
where Coriolis forces exert strong effects on the tur- 
bulence structure. (The authors in fact regard their 
study as especially relevant to flow in the impeller 
passage of a centrifugal compressor.) The Coriolis 
forces directly affect the Reynolds stress production 
tensor. Howard et al c'4, while not incorporating a 
full ASM treatment, have shown that the inclusion 
of the Coriolis terms as indicated by Pij leads to fairly 
satisfactory accounting of the measured flow 
behaviour. The second study is the impinging jet 
exploration of Amano 6n which is closely related to 
splash-cooling problems. In this type of flow the 
level of wall stress or heat transfer coefficient is 
highly sensitive to the physical model of the immedi- 
ate near-wall region where turbulent fluctuations are 
damped and significant transfer of momentum and 
heat occurs through molecular interactions. Amano's 
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computations, using the standard k - e  BVM and a 
simple two-layer model of the near-wall zone, 
achieve generally satisfactory agreement with avail- 
able experiments not only of skin friction coefficient, 
of which an example appears in Fig 11, but also of 
the turbulence energy distributions near the surface. 

The final example considered is perhaps the 
most difficult: the flow around a 90 ° bend in a duct 
of square cross section (Fig 12(a)). While not 
especially mimicking the flow in any gas turbine 
component, it has most of the main ingredients that 
make turbulent flows in turbines so challenging to 
predict. The computations shown in Fig 12(b) were 
contributed to the Stanford Conference by Chang et 
ale6; they are problably the most successful set from 
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the three groups submitting computations for this 
flow. A 3-dimensional semi-elliptic code was em- 
ployed with a 14 x 15 grid to map the half section 
(the flow being symmetric about the horizontal mid- 
plane of the duct) with a total of 94 streamwise 
sections divided roughly equally between the 
straight region of duct approaching the bend, the 
bend itself, and the downstream tangent. Fig 12(b) 
compares measured and calculated streamwise 
isovels at 71 ° from the bend inlet. The increase of 
pressure on the outside of the bend leads to a sub- 
stantial secondary flow as sketched in Fig 12(a). This 
in turn distorts the streamwise isovels. Fig 12(b) in 
fact contains two sets of computations, based on 
different numerical approximations of convective 
transport. One of these, 'HYBRID', is a minor variant 
on the first-order upwind differencing which became 
the 'miracle' of the late 1960's but is now recognised 
to create so much numerical dispersion that, for all 
its stability, it seems of little value for 3-dimensional 
computations (where grids are necessarily fairly 
coarse) unless the grid can be adapted to follow the 
flow. Humphrey's 66 group's computations with the 
quadratic upstream differencing (QUICK) scheme of 

67 Leonard (formally of 3rd-order accuracy) are the 
first reported with this discretisation for a 3- 
dimensional turbulent flow. In various tests of 
accuracy in simpler flows 6s it has performed 
encouragingly well, so there was especial interest in 
seeing what predictions it generated for the 90 ° bend. 
Fig 12(b) allows certain conclusions to be drawn, 
but leaves many more questions to be answered. For 
example, the fact that no contour for U / O  = 1.28 
exists for the HYBRID computations is in line with 
the comments above on the serious numerical 
diffusion associated with this scheme. The QUICK 
results are better in this respect, indeed they are in 
significantly closer agreement with the experimental 
behaviour than those obtained with HYBRID. Yet, 
there are still substantial differences between experi- 
ment and computation. Are these due to weaknesses 
in the turbulence model (the standard k - e  BVM 
was adopted), to a grid that was insufficiently fine 
even though QUICK was used, or to some other 
cause? The writer's hunch is that while errors arising 
from the first two sources may well be significant, a 
more important source of the discrepancy may be in 
handling the boundary condition for the secondary 
velocity component. Intensive computational work 
on this flow is in progress among several of the major 
groups in computational fluid mechanics. It is thus 
likely that conjecture on these topics can be turned 
to conclusion in the near future. 

Concluding remarks 
The final example, with its inconclusive result 
was, perhaps, the best example on which to end if 
a balanced view of where we stand is to emerge. 
The comparisons have shown that when flow 
complexities are added one at a time in the estab- 
lished style of academic research, the calculational 
schemes, comprising a turbulence model and a pro- 
cedure for solving the equations, do quite well, par- 
ticularly when ASM treatments for the turbulent 

stresses or fluxes are included. Successful prediction 
is, however, much less certain when all the com- 
plexities are present simultaneously and where 
severe storage or time limitations prevent as fine a 
grid being used as one would otherwise desire. 

Recently a working party on turbulence 
modelling was set up to enquire whether uncertain- 
ties in turbulence modelling were responsible for 
the comparative failure of computational fluid 
mechanics to make an impact in the UK aeronautics 
industry, including the gas turbine industry. The 
working party's report 69 acknowledged the limited 
applicability of current turbulence models but 
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identified the main problems to be software, ie the 
lack of sufficiently adaptable computer programs for 
industrial type use, and acute shortage of manpower 
with the requisite skills. Certainly, in comparison 
with current activity in France and its development 
over the last decade, the UK programme is risible. 
Predictably, the USA is mounting a strong effort 
through the various NASA laboratories and the 
myriad, small, spin-off companies that compete 
vigorously for the considerable monies made avail- 
able by government agencies for computational 
studies in turbulent shear flows. Perhaps the most 
interesting aspect of the US scene, however, is that 
even there, where continual change is the norm and 
where innovation is traditionally expected to arrive 
under its own steam, major government funded pro- 
grammes in computational fluid mechanics have 
been launched at ~elected universities to increase 
greatly the supply of young people with specialised 
training. If there is a need there, where the value of 
computational fluid mechanics is already widely 
accepted, how much more urgent is the need for 
stimulus elsewhere, not just in the universities but 
also in the aircraft and gas turbine industries. 

References 
1. Schumann U. ]. Comp. Phys., 1975, 18, 376--404 

2. Gr6tzbaeh G. and Schumann U. Turbulent Shear Flows--1.  
Springer- Verlag, 1979, 370--385 

3. Gr6tzbach G. Direct numerical simulation of turbulent 
momentum and heat transfer in an internally heated fluid 
layer. Proc. 7th Int. Heat Transfer Conference, Munchen, 
September 1982 

4. Mansour N. N., Ferziger J. H. and Reynolds W. C. Large- 
eddy simulation of a turbulent mixing layer. Rep TF-11 
Therrno-sicences, Div, Mech. Eng. Dept., Stanford Univer- 
sity, April 1978 

5. Feiereisen W. J., Shirani E., Reynolds W. C. and Ferzlger 
J. H. Direct simulation of homogeneous, turbulent shear 
flows on the ILLIAC-IV Computer: Applications to Com- 
pressible and Incompressible Modelling. Proc. 3rd Tur- 
bulent Shear Flow Symposium p. 19. 31, Univ. California 
Davis, Sept, 1981 

6. Moin P. and Kim J. Numerical investigation of turbulent 
channel flow. NASA Ames Research Center, July 1981 

7. Moses H. L. The behaviour of turbulent boundary layers 
in adverse pressure gradients MIT Gas Turbine Lab. Rep 
73, 1964 

8. Spalding D. B. A unified theory of friction, heat transfer 
and mass transfer in the turbulent boundary layer and wall 
jet ARC CP 829, 1964 

9. Coles D. E. ]. Fluid Mech., 1956, 1, 191-226 

10. Patankar S. V. and Spalding D. B. Int. ]. Heat Mass Trans- 
fer, 1967, 10, 1389 

11. Kline S. J., Morkovin M. V., Sovran G. and Cockrell D. J. 
(eds) Proc. Computation of  Turbulent Boundary Layers- 
1968 Vol. 1, Stanford University, 1968 

12. Free Turbulent Shear Flows-Vol. 1 Conference Proceed- 
ings NASA Langley Research Center NASA SP321, 1973 

13. Wolfshtein M. Convection processes in turbulent imping- 
ing jets PhD Thesis Faculty of  Engineering/University of  
London 1967 

14. Runchal A. K. and Wolfshtein M. f. Mech. Eng. Sci., 1969, 
11, 445 

15. Gosman A. D., Pun W. P., Runchal A. K., Spalding D. B. 
and Wolfshtein M. Heat and Mass Transfer in Recirculating 
Flows Academic, London, 1969 

Turbulent f low in gas turbine blading 

16. Thorn A. Proc. Roy Soc. A, 1933, 141,651 

17. Apelt C. J. ARC. R dr M 3175, 1961 

18. Kawaguti M. f. Phys. Soc. Japan, 1953, 8, 747 

19. Harlow F. H. and Welch J. E. Phys. Fluids, 1965, 8, 2182 

20. Thommen H. U. ZAMP, 1966, 17, 369 

21. Chorin A. J. Math. Computation, 1968, 22, 745 

22. Patankar S. V. and Spalding D. B. Int. ]. Heat dr Mass 
Transfer, 1972, 15, 1787 

23. Briley W. R. The computation of 3-dimensional viscous 
internal flows Proc. 3rd Int, Conf. on Numerical Methods, 
Paris, Vol. II, 1972 

24. Thompson ]. F., Thames F. C. and Matsun C. W. ]. Comp. 
Phys., 1974, 15, 299 

25. Thomson J. F., Shanks S. P. and Wu J. C. AIAA J. 1974, 
12, 787 

26. Launder B. E. and Spalding D. B. Mathematical Models 
of Turbulence. Academic, London, 1972 

27. Reynolds W. C. Adv. Chem. Energy, 1974, 9, 193 

28. Reynolds W. C. and Cebeci  T. Calculation of Turbulence 
Flows. Ch. 5 in Turbulence (ed. P. Bradshaw) Springer- 
Verlag, 1976 

29. Launder B. E. and Spalding D. B. Comp. Meth. in Appl. 
Mech. Eng., 1974, 3, 269 

30. Rodi, W. Turbulence Models and their application in 
hydraulics. IAHR, 1980 

31. Launder B. E., Reeee G. and Rodi W. J. Fluid Mech., 1975, 
68, 537 

32. Lumley J. L. Adv. Appl. Mech., 1978, 18, 123 

33. Boussinesq J. Essai sur la th~orie des eaux courantes. Mdm. 
Acad. Sci., 1877, 23, I 

34. Prandtl L. ZAMM, 1925, 5, 136 

35. Taylor G. I. Phil Trans. Roy. Soc. CCXV, 1915, 1 

36. Rotta J. C. Zeitsch. fiir Physik, 1951, 129, 547 

37. Naot D., Shavit A. and Wolfshtein M. Israel ]. Technology, 
1970, 8, 259 

38. Rodi, W. The Prediction of free boundary layers by use of 
a two-equation model of turbulence. PhD Thesis University 
of  London, Faculty of  Engineering, 1972 

39. Launder B. E. and Morse A. P. Numerical prediction of 
axisymmetric free shear flows with a Reynolds stress 
closure. Turbulent Shear Flows-1 (eds F. ]. Durst, B. E. 
Launder, F. W. Schmidt, f. H. Whitelaw ) 279-294, Sprin- 
ger-Verlag, 1979 

40. Chung M. and Adrian R. Proc. 2nd Turbulent Shear Flow 
Symposium, London, p. 10--43, 1979 

41. Sindir M. Numerical study of turbulent flows in backward 
step geometries: comparison of four models of turbulence. 
PhD Thesis, College of Engineering, Univ. Calif. Davis, 
1982 

42. Clef A. Mod~lisation de la turbulence dans le cadre des 
fermetures en un point. Calcul d'~chelles de temps et de 
longueur. Thbse Docteur Ingenieur, Ecole Nationale Super- 
ieure de l'Aeronautique et de l'Espace, Toulouse, 1982 

43. Rodi W. ZAMM, 1976, 56, 219 

44. Shir C. C. ]. Atmos Sci., 1973, 30, 1327 

45. Gibson M. M. and Launder B. E. ]. Fluid Mech., 1978, 86, 
491 

46. Daly B. J. ]. Fluid Mech., 1974, 64, 129 

47. Launder B. E. Heat and Mass Transport. Ch. 6 in Tur- 
bulence (ed. P. Bradshaw) Springer-Verlag, 1976 

48. Bradshaw P. Proc. Stanford-AFOSR-HTTM Symposium 
on Complex Turbulent Flows Vol. L p. 86 (ed. Kline S. f., 
Cantwell B. and Lilley G.) 1981 

Int. J. Heat & Fluid Flow 183 



B. E. Launder 

49. Hancock P. E. Effect of free-stream turbulence on turbulent  
boundary layers. PhD Thesis, Faculty of  Engineering, Uni- 
versity of  London, 1980 

50. Launder  B. E., Leschziner  M. A. and Sindir M. The 
UMIST-UCD Computat ions for the AFOSR-HTTM-Stan- 
ford Conference on Complex Turbulent  Flows. Bef  
TFD/81/1 Thermodynamics and Fluid Mechanics Div. 
UMIST, 1982 

51. Charnay G., Comte,Bellot  G. and Mathieu 1. C. Develop- 
ment of a turbulent  boundary layer on a flat plate in an 
external turbulent  flow. AGARD Conf. Proc. 1971, 93 

52. Pr iddin C. H. Private Communicat ion,  1972. See also: The 
behaviour  of the turbulent  boundary layer on curved porous 
walls. PhD Thesis, Faculty of  Engineering, University of  
London, 1975 

53. Turner  A. B. ]. Mech. Eng. Sci., 1971, 13 

54. Jones W. P. and Launder  B. E. Int. ]. Heat & Mass Transfer, 
1973, 15, 301 

55. Gillis J. C. and Johnston 1. P. Turbulent  boundary layer 
on a convex curved surface. Bep HMT-31. Mech. Eng. 
Dept. Stanford University, 1980 

56. Shabaka I. M. M. A. Turbulent  flow in an idealised witlg- 
body junction. PhD Thesis, Faculty of  Engineering, Uniw'r- 
sity of  London, 1979 

57. Rodi W., Celik I., Demuren  A. O., Scheurer  G., Shirani 
E., Leschziner  M. A. and Rastogi A. K. Calculations for 
the 1980-81 AFOSR-HTTM-Stanford Conference on Com- 
plex Turbulent  Flows. SFB 80 Bop T/199, University of  
Karlsruhe, 1981 

58. Hah C. and Lakshmlnarayana B. ]. Fluids Eng., 1980, 102, 
462 

59. Bergeles G., Gosman A. D. and Launder  B. E. Numerical 
Heat Transfer, 1978, 1,217 

60. Bergeles G., Gosman A. D. and Launder  B. E. ASME. ]. 
Eng. Power, 1980, 102, 498 

61. Bergles G., Gosman A. D. and Launder  B. E. ASME. ]. 
Heat Transfer, 1981, 103, 141 

62. Ramsey J. W. and Goldstein  R. J. Interaction of a heated 
jet with a deflecting stream. NASA-CR 72613, 1970 

63. White A. The prediction of the flow and heat transfer in 
the vicinity of a jet in cross-flow. ASME Winter Annual 
Meeting Nov. 1980 

64. Howard, J. H. G., Patankar S. V. and Bordynuik R. M. ]. 
Fluids Eng., 1980, 102, 456 

65. Amano R. PhD Thesis, College of Engineering, Univ. 
California Davis, 1981 

66. Chang  C, S. M., Han T. and Humphrey  J. A. C. Prediction 
of Case 512 for the 1981 AFOSR-HTTM Stanford Confer- 
ence on Complex Turbulent  Flows. Mech. Eng. Dept. Univ. 
California, Berkeley, 1982 

67. Leonard B. P. Comp. Meth. Appl. Mech. Engng., 1979, 19, 
59 

68. Han T., Humphrey  J. A. C. and Launder  B. E. Comp. Meth. 
Appl. Mech. Engng., 1981, 29, 81 

69. Report of Working Party on Turbulence Modelling (B. 
Haines, Chairman). Aeronautical Journal, Aug.~Sept. 1982, 
269-277 

70. Crawford M. E., Kays W. M. and Moffat R. J. ]. Eng. Power, 
1980, 102, 1006 

71. de Vahl Davis G. and Jones I. P. Natural Convection in a 
square cavi ty--a  comparison exercise. Numerical Methods 
in Thermal Problems-H (eds. 1t. W. Lewis, et al.), 552, 
Pineridge Press, Swansea, 1981 

72. Reynolds B., Lakshminarayana B. and Ravindranatb A. 
AIAA], 1979, 17, 959 

73. Bradshaw P. and Love E. M. Aero. Bes. Counc. R & M 
3205, 1959 

74. Humphrey  J. A. C. Flows in ducts with curvature and 
roughness. PhD Thesis, Faculty of  Engineering, University 
of  London, 1977 

75. Stenning A. H. Stall Propagation in a Cascade of Airfoils. 
Journal of  the Aeronautical Sciences, 1954 

76. Stenning A H., Kriebel A. R. and Montgomery S. Stall 
Propagation in Axial Compressers. NACA TN-3580, 1956 

77. Stenning A. H. and Kreibel  A. R. Stall Propagation in 
Cascades of Airfoils. ASME Transactions, 1958, pp. 779- 
79O 

78. Stenning A. H., Seidel B. S. and Senoo Y. The Effect of 
Cascade Parameters oil Rotating Stall. NASA TM 3-16- 
59W, 1959 

A l a n  H u g h  S t e n n i n g  
Alan Stenning graduated with first class honours 
from Glasgow University in 1950, after a brilliant 
undergraduate career. He then worked for 
Rolls-Royce at Derby for a short time before going 
on to Massachusetts Institute of Technology with 
a fellowship in 1950. MIT was to have a great 
influence on his subsequent research on small 
turbines in the Dynamic Analysis and Control 
Laboratory. Later he worked in the Gas Turbine 
Laboratory and a remarkable series of analyses 
and experiments on rotating stall established him 
in the front rank of the young mechanical 
engineers working in the U.S. in the late fifties. 

He was then attracted to developments in 
nuclear engineering and moved to the Nuclear 
Engineering Department at MIT, with a brief spell 
in industry. In 1960 he joined Northern Research 
and Engineering as technical director, using his 
knowledge of turbomachinery design in a wide 
variety of consultancy projects. 

During subsequent appointments at the 
University of Miami and Lehigh University, 
Stenning returned to his major interest of 
unsteady f low in heat transfer and in tur- 
bomachinery. He brought together all hiswork on 
inlet distortion and rotating stall effects in 
compressors in two superb lectures given to the 
A S M E  Turbomachinery course at Iowa State in 
1973 shortly before he died. This work has now 
been published bythe ASME, in whose jou rnals he 
placed much of his work. 

Stenning's great strength was in his ability 
to bring a brilliant mind to bear on a complex 
problem, no matter what new field it involved, and 
to solve that problem with analyses of simplicity 
and beauty. In Alan Stenning, Glasgow University 
and MIT together produced a distinguished 
mechanical engineer, one of the best of his 
generation. 

J. H. Horlock 

Stenning's contribution to turbomachinery fluid mechanics were 
summarised in the First Stenning Memorial Lecture delivered in 
April 1975 and published in December 1976: 

Horlock J. H. Alan Hugh Stenning, 1928-73, Distinguished 
Engineer. Trans. ASME, Series I (J. Fluids Engineering) 98, 4, p 607 
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